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FLOW OF AN ANOMALOUS VISCOUS FLUID 

IN A CENTRIFUGAL JET NOZZLE 

O. M. Sokovnin, I. V. Flegentov, and V. A. Polovnikov UDC 532.135 

The motion of twisted flows of an anomalous viscous fluid subject to an expo- 
nential law has been studied numerically. 

Centrifugal jet nozzles have found extensive application in chemical technology apparatus 
requiring uniform spraying densities (absorbers, wet dust collectors, hydraulic foam ex- 
tinguishers). In this case, the spray medium is generally a form of an anomalous viscous 
fluid: solutions of surface-active materials, suspensions, etc. 

Let us take a look at the flow of an anomalous viscous fluid subject to an exponential 
law in a centrifugal jet nozzle (Fig. I). We will assume the regime of motion to be both 
steady-state and axisymmetric. We will separate the flow region into the following zones: 

I) the peripheral flow, bounded by the conical surfaces of frame 1 and insert 2; 

II) the central flow in the channel, with a threaded insert; 

III) the zone in which the peripheral and central flows are mixed. 

I. We will examine the motion of the fluid in a special orthogonal curvilinear coordi- 
nate system ~,~ , 6, with the ~ axis coincident with the generatrix of the internal c~ne. 
We will assume in the solution that i) the influence of mass forces on the flow of the fluid 
is negligibly small; 2) that the velocity in the direction of the 8 axis is considerably 
smaller than the velocity in the direction of the ~ axis. The system of differential equa- 
tions of fluid motion with consideration of [i] will then assume the following form: 

OV~ pV~sin~ = ____0P K O (E._ 1 0 V ~ +  KE n-l ~ OV~ pVt Ol 8 c o s ~ - - l s i n ~  O 1  + 06 \ 08 ] 6 c o s ~ - - I s i n ~  08 

OV~ pV~Vzsin~ =K 0 (E._t OVa) 2KE.-~cos~z OV~ 
pVt Ol 8cos tz - - l s in tz  ~ + 8costz--lsino~ 08 " 

(1) 

pV~cos~ = Op + K 0 ( OVt ) K E n - l s i n a  OVz 
8 c o s ~ - - l s i n ~  - -  O~ ~ En-I L 08 8 c o s ~ - - / s i n ~  08 

Here 

E ] / f  OVt 2 

The bounda ry  c o n d i t i o n s  w i l l  be as  f o l l o w s :  

V l ~  V~-~- 0 for 8-~ O; 8--~ ~o" (2) 
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Fig. i. Diagr~ of a centrifugal-jet nozzle, with the flow re- 
gion divided into the following zones: I) peripheral flow zone; 
II) central flow zone; III) mixing zone. i) frame; 2) insert; 
3) peripheral-flow guide channels; 4) central channel with 
threaded insert. 
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Fig. 2. Change in the velocities Vs (i), V~' (2), and in the 
pressure P' (3) along the length of the peripheral channel 
(Re : 35, V0 = 1 m/sec): a) s : 0; b) s : 0.5s c) s = s 

We will specify the profiles of the velocity components in the inlet section of the channel 
in the following form: Vs : constl, V~0 = const2. Owing to the structural features of 
the nozzle (the angle of inclination for channels 3, twisting the peripheral flow, relative 
to the longitudinal axis, is no greater than 45 ~ ) with the twisting factor B in the case 
under consideration no greater than unity. We will solve the problem on a computer by an 
iteration method involving the utilization of a finite-difference scheme [2]. The grid 
dimension i0 x 9 (i0 along the s axis and 9 along the 6 axis) with a constant interval along 
each of the axes. The channel walls in this case coincide with the boundary nodes of the 
grid along the 6 axis, while the values of the velocities Vs and V~ at these nodes are set 
in accordance with boundary conditions (2). The iterations are curtailed as soon as the 
following conditions are satisfied, and namely: 

max V m V m-'l 
,,'1 i,l,  - -  4 i  I~--10-~, (3) 

where m is the iteration number; Vi, j is the value of the velocities at the (i, j) node 

of the grid. 

The method that is usually used in such problems, i.e., the introduction of stream 
functions to eliminate pressure from system of equations (I), in the given case leads to 
significant mathematical difficulties due to the need to make provision for the variable 
viscosity of the fluid, dependent on the velocity of fluid motion through the channel. We 
will therefore determine the pressure directly from the third of the equations in system (i): 

O[ V; r ~ . ~ O ( E n _ l O V l  ~ ~ E"-I sin ~ OVt]dS--}-~(1), (4) 

P=,[ 6coso~--lsin~ p - O l  - a S  ! p 6 c o s a - - l s i n ~  O--~ 
0 
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Fig. 3. Profile of the velocity V z' at the outlet from the cen- 
tral channel (Re = 13.5, V 0 = 1 m/sec): a) lateral cross sec- 
tion of the central channel, separated by the threaded inserts; 
b) profile of V z' for �9 = ~/4 (i), ~ = ~/2 (2). 

Fig. 4. Velocity profiles in the outlet section of the nozzle 
(Re = 252, V 0 = 1 m/sec): a) profiles V R' (i), Ve' (2); b) pro- 
file V~' 

which is solved by numerical integration. 

Figure 2 shows the results from calculations with he = 35 and B = 0.83. Comparison 
of the derived profiles demonstrates that as motion proceeds through the channel the axial 
component of the velocity Vs assumes a parabolic profile, whereas the circumferential velo- 
city component V~ forms a concave profile with its minimum at the central portion of the 
channel. No reverse flow arises in this case. The drop in pressure along the 6 axis at 
various cross sections of the channel is insignificant, and the pressure profile is nearly 
rectangular, with some rise in pressure at the outside wall of the channel. 

II. Let us introduce a system of helical coordinates z, ~ , F [3], where the z axis 
coincides with the longitudinal axis of the nozzle. In our solution of this problem we 
will neglect the influence exerted by the mass forces and we will assume that i) V~ ~ V r 
Vz; 2) ~ ~ ~ 8/8~ 8/8z; 3) the pressure drop across the channel is equal to the pres- 
sure drop across the peripheral channel. The system of equations of motion, in conjunction 
with the adopted assumptions, reduces to the following single equation: 

4~2F 2+S ~ + af 4~f 2+S~ Vz -- 

S Op t( 0 (E~_, OV, ) 
"1/4u~I ~ + S 2 Oz + I TM O~ O~ + 

+K. Oo__F [E,_, ( OV,oF 4u~I~4S~'I'+ S~ V,)] = O. 

(5) 

Here 

[(1 
E = 2" Oqo + OF 

4 ~2F V=)~] ll~ 
4~2I "z -5 8 2 

The boundary conditions have the form 

Vz=O when f=fo, ~=0, ~=~. 

We will solve (5) by the method which was used in the solution of system (i) in a 7 x 13 
grid. The resulting profile of the velocity V z = V(F, ~) at the outlet from the channel 

(6) 
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for the case in which Re = 13.5 is shown in Fig. 3. The profile of the axial velocity V z 
increases smoothly from the center of the channel (divided by the plane of the helical insert) 
to the periphery. The maximum is attained for the case in which F = (0.7-0.8)F0, dependent 
on the change in the circumferential coordinate ~. 

III. The mixing zone is a converging conical channel. To describe the motion of the 
fluid in this zone, we will make use of a spherical coordinate system R, ~ , 0, whose center 
is situated on the longitudinal axis of the nozzle at the point at which it intersects with 
the generatrix of the external cone (see Fig. i). Ifwe assume that all of the velocity 
components and their derivatives in this zone are of the same order of magnitude and if 
we neglect the mass forces, we derive the following system of equations: 

+ 

OVR V o OVR Vo + V,~ Op 4KE n-1 
o v~-3 -U+ R oo R = - -  O--R + R 

+2K-~---O (E._I OVR)oR + KEn-'ctgO ( O V . R  k OR + RI OVRoo 

oo [V-R  oo  - 

0 (Vu OV~ 

KE ~ '  ctg 0 + 

+ 2KE"-* (OVa 
R (-~ 

v, +! 
R e 

o (vR ov~ 

3KE"-IR ( OV~oR 

2KE "-I ctg 0 

Here 

OVR 
OR + 

V,R ) + 

2KE"-' [ OV, + e~ o r ,  + 2VR ), 
R ~ k O0 

Ve OVe Vu Ve V~ etg 0 ) 1 Op 
R ao b R R ~ R O0 + 

OVo ) 2K 0 [E._, /OV. )] 
o o + v a + R~ o--~ [ - - ~ -  + v a + 

v. , oV,,) + K ~ [~._I ( OV. 
W + - k  - oo o~ 

" VcVo etg 0 ) Vo , OV~ + Vu V____~ + = 
R oo R R 

.V~ [E"-' OV~ V~ (o. .)]+ 
O~ R '~ O0 O0 ' 
OVu + OVe + 2Vu + etg OV a = 0. 

R ~ O0 

E--J2 OVa ~ 2 ( OV, 2 

(7) 

( )I ) i v l] OVo Vo + 1 OVR + 1 OV, ctgO V, + 
+ OR R R-  O0 , R O0 R .. OR R . 

In this case, the velocity components at the channel walls are equal to zero, i.e., 

V R = V r  e = 0 when 0 = -+-a .  ( 8 )  

As the initial conditions for the velocity values at the inlet to the zone, we will 
use the calculation results obtained in the solutions for the previous zones, taking into 
consideration the transition of these solutions to spherical coordinates. System of equa- 
tions (7) is also solved by an iteration method involving the use of finite-difference 
schemes, and we find the velocity V 8 here from the fourth of the equations in system (7) 
by integration: 
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Vo___ ____~1 ~ ( _ R  OVR 2VR ) sin OdO. (9) 
sin @ ~ . OR 

Integration of (9) is introduced numerically. In calculating the mixing zone we choose 
a uniform grid with dimensions of 8 • 9 (8 along the R axis and 9 along the @ axis). The 
specifics of the problem relate to the exposure of the indeterminacies of the form 0/0 found 
in the equations of system (7) and in Eq. (9) for the case in which O = 0. Here we make 
use of the l'HSpital rule and the physical features of the flow V~ = V 0 = 0 for the case 
in which @ = 0. Using the following dimensionless quantities, we will introduce the solu- 
tion of system (i), (5), and (7): 

V~-~ p ' = - P  �9 v~=V~; z r  (lO) 
oV~ ' V o p a t  ' 

here a0 is the characteristic linear dimension for each of the zones being studied: [) 
a~ = 6o; II) a 0 = F0; III) a, 0 = F n. Figure 4 shows the velocity profiles VR, Ve, and V O 
in the outlet section of the nozzle for Re = 252. 

Analysis of these graphs shows that the profile of the axial velocity V R is nearly 
parabolic, and that this is accompanied by a significant velocity gradient at the channel 
walls, where it increases from zero to its maximum value. The profile of the circumferential 
velocity V@ attains its maximum near the walls, and then diminishes linearly to zero at 
the channel axis. The magnitude of the velocity V~ changes according to the laws of a para- 
bola assuming zero values at the walls and in the center of the channel. The change in 
V@ in this case occurs more smoothly than for V R and V~. We should take note of the fact 
that as a consequence of axial symmetry in the case of @ situated in the interval [-~ 0], 
the velocities Vq, and V9 change sign. The geometric channel dimensions and the initial 
values for the velocities Vs V~0, and Vz0 used in the calculations for the nozzle shown 
in Fig. 1 are presented below: 

~o, ~ lo, rim1 fo,r~ ~z, rad Ro--R1, nml Fc,~n Vlo, m/sec V~o' m/secVzo , m/sec 
1,6 9,0 1,2 0,693 3,5 1,5 0,71 0,59 1,53 

Utilization of this calculation method is limited by the conditions under which .aminar 
flow is achieved within the mixing zone. Stable convergence of iterations is observed in 
the solution of system (7), when Re <_ 360. With a larger value for Re in the mixing ~one 
we have the onset of flow agitation. It should be noted that for the first two zones the 
stable solution is obtained for Re <_ 7800 and Re <_ 6200, respectively. The laminar nature 
of the flow is retained in such channels for a considerably longer period of time thar in 
cylindrical tubes, a fact which was pointed out in [4]. 

The derived fields for the velocities and pressures in the motion of an anomalou~ vis- 
cous fluid in a centrifugal-jet nozzle can be used to calculate the spray flare angle and 
the drop dispersion [5, 6] in the design of mass-exchange apparatus. Moreover, the method 
for the solution can be used in calculating the flows of anomalous viscous fluids in conical 
and helical channels such as those most frequently used in the mass-exchange equipment of 
chemical technology. 

NOTATION 

E, second invariant of the strain rate tensor, sac-l; p, fluid density, kg/m3; p, hydro- 
static pressure, Pa; K, rheologic constant, Pa.cn; n, flow index; Vs V, 0, Vz0, initial 
values of the axial and circumferential velocities in the peripheral channel and the axial 
velocity in the helical channel, m/sec; B = Vr163 twisting factor; Vs V~, Vz, axial 
and circumferential velocity in peripheral channel and axial velocity in helical channel, 
m/sec; 6o, width of gap between cones forming the peripheral channel, m; ~, slope of cone 
generatrix to the longitudinal nozzle axis, red; S, pitch of the helical line, m; F0, radius 
of helical channel, m; s length of peripheral channel, m; R0-Rl, length of mixing zone, 
m; Fn, radius of nozzle, m; VR, Ve, VO,: axial , circumferential, and radial components of 
the fluid velocity in the mixing zone, m/sac; Re = v2-na0np/K, modified Reynolds number for 
a non-Newtonian fluid; V0, unit velocity, m/sac; f(s arbitrary integration function deter- 
mined by the pressure difference across the channel. 
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MOTION OF k RAREFIED GAS IN A PLANE CHANNEL IN THE PRESENCE 

OF CONDENSATION ON THE CHANNEL WALLS 

F. M. Sharipov and T. V. Shchepetkina UDC 533.6.011.8 

We examine the flow of a rarefied gas through a broad range of Knudsen numbers 
under the action of small pressure and temperature differences in a plane short 
channel, with provision made for the processes of evaporation and condensation 
at the channel walls. 

The processing of mass transfer, in which provision is made for evaporation and conden- 
sation on the walls, have been studied in numerous papers, such as, for example [1-5]. The 
transport of gas between plane infinite plates is the subject of [i], while [2, 3] deal 
with the motion of a gas in an infinite pore and a number of simplify&ng assumptions have 
been made here; in [4] we find a study of the flow in a finite channel, but the gas flow 
rate and its dependence on the length of the channel and the flow regime have not been dealt 
with, and in this particular case the boundary conditions are specified for the ends of 
the channel. In [5] we find a study of the kinetics involved in the mass transfer that 
occurs under the action of a small pressure difference in a plane finite pore, with considera- 
tion given to vaporization and condensation at the walls and at the bottom of the pore. 
The boundary conditions are specified directly at the inlet to the pore. In the present 
paper we investigate the heat and mass transfer that arises under the action of small pres- 
sure and temperature drops across a finite channel, with consideration given to the evapora- 
tion and condensation that occurs on the channel walls over a broad range of Knudsen numbers. 
Unlike the earlier-cited studies, the flow of gas is treated here not only within the chan- 
nel, but also in the regions externally adjacent to the channel. 

Let us take a look at a plane channel of length s of height a, and infinite in width, 
as shown in Fig. i, connecting two vessels containing the identical gas. At a rather large 
distance from the channel, the gas within the vessels is maintained under equilibrium condi- 
tions at pressures PI and P2 and temperatures T l and T2, respectively. Here the distribution 
functions are in the form of absolute Maxwellians: 

Pi ( m 13/2 ( m~ ) ' i= l' ~" 
V~= 'kT~ , 2nkT-----~. exp ~kT~ 

The walls of each of the vessels exhibit temperatures of T l and T2, respectively. It is 
assumed that all of the molecules reaching the walls of the vessels are diffusely reflected, 
and absorbed as they impinge on the channelwalls. The walls, in this case, radiate the 
molecules with the following distribution function: 
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